Polymers Groups

Alexey V. Lyulin

TU Eindhoven

The research in our group deals with the multiscale modelling of soft matter, focusing on macromolecules, in close connection with experiment and industry. Our main interests include classical computer simulations of both synthetic and bio-inspired polymers and polymer nanocomposites in solution, melt and in a glassy state, by molecular dynamics, Monte Carlo and Brownian dynamics methods. The major emphasis is always on atomic-scale properties of polymer interfaces and their connection to the macroscopic performance; nowadays the attention is shifting toward novel energy-related applications.

Andrea Giuntoli

University of Groningen

Our group develops molecular dynamics and multiscale computational models to study structure-property relationships of soft materials. We focus on complex environments where heterogeneities, confinement, and out-of-equilibrium phenomena play a major role. In collaboration with experimental groups and industries, we use our models to understand what ingredients are needed to design optimal, sustainable materials towards a better environment (such as materials used for the energy transition) or a better life (such as materials used for biomedical applications).

Claas Willem Visser

University of Twente

Our research focuses on manipulating fluids in the air to create in new advanced materials. For example, solidification of liquid templates (bubbles or droplets) on-the-fly enables rapid production of tailored soft or solid particles. Alternatively, these particles are directly 3D-printed into complex architectures, such as graded polymer foams. With collaborators, we optimize these materials for advanced functionality in e.g. acoustics, mechanics, biology, chemistry, or pharmacy.

Daniela Kraft

University of Leiden

The soft condensed matter group of Daniela Kraft is interested in the physics and self-organization of soft matter systems. Topics include the rational design of anisotropic and patchy particles for use as model systems and self-assembly, particle-covered emulsions and virus particles.

Daniele Parisi

University of Groningen

Daniele holds A PhD in Materials Science and Technology attained at the University of Crete within the Marie Skłodowska Curie training network “COLLDENSE” (Colloids of Designed Response). Daniele is a Soft Matter experimentalist, with extensive knowledge of rheology, rheometry, polymer and colloid physics.
The research goal in the Parisi group is to understand the structural and dynamic properties of various (bio)polymeric and colloidal systems, in quiescent and under deformation conditions, to design and engineering novel impactful materials. The experimental research approach in the Parisi group involves various rheological techniques, often coupled with in-situ spectroscopy (i.e., birefringence, light scattering, Raman and FTIR), and molecular models, with the aim at linking molecular properties of polymers and macroscopic rheological response.

Hans Wyss

TU Eindhoven

We use and develop experimental tools to study the structure, dynamics and rheology of soft materials, thereby revealing the physical mechanisms that govern their behavior. Current topics include the mechanics of cells and soft microgel particle systems, the use of microfluidics to control and study soft matter, colloids with anisotropic interactions, and the development of new mechanical probes.

Jasper van der Gucht

University of Wageningen

The Wageningen Soft Matter group works on a range of diverse topics, in which macromolecules generally play an important role. Specific topics include: foams, emulsion and ionic liquids; dense particle systems; biomimetic materials; molecular modelling; proteins and engineered protein polymers; self-assembly of micelles, membranes and vesicles; hydrogels. We aim at analysing soft materials from a physics point of view and manipulating them using chemical tools and expertise.

Joris Sprakel

University of Wageningen

We study and develop new responsive colloidal and polymeric systems. A major aim is to identify the mechanisms for catastrophic macroscopic phenomena such as fracture, melting and phase inversion at which microscopic structures, stresses and thermal fluctuations all become of significance. We also work on manipulating this interplay at the microscopic level to create new materials with enhanced functionality.

Kees Storm

TU Eindhoven

We are a theory group, focused on predictive modeling of the mechanical properties of soft, mostly biological, materials: Biopolymers, lipid bilayer membranes, biological and biomimetic network materials. We use analytical theory, Monte Carlo and MD simulations to better understand the relation between microscopic properties, spatial organization and, ultimately, macroscopic response.

Laura Rossi

TU Delft

We work on the design, synthesis and characterization of colloidal particles for the self-assembly of novel materials. One of the main research focus of the group is the use of magnetic interactions to induce, control and study the rational assembly of colloids into materials with specific and adaptable mechanical and optical properties. Other topics include active matter, defect dynamics, drug delivery and diagnostics.

Liesbeth Janssen

TU Eindhoven

We are interested in soft matter systems that are inherently out of thermodynamic equilibrium, ranging from non-crystalline polymers and glasses to active and living matter. We employ a combination of statistical-mechanical theory, analytical modeling, and computer simulations to study the structural, dynamical, and mechanical response properties of such materials. The aim is two-fold: firstly, we seek to gain new fundamental insight into the physics of soft and living matter, focusing mainly on the relation between microstructure and emergent dynamics; secondly, we aim to develop new theoretical tools that will ultimately allow us to rationally design, control, and optimize functional materials with adaptive, life-like, and "smart" properties.

Patrick Onck

Groningen University

Our research is aimed at a theoretical understanding of the fundamental biophysical processes that are active in the cell. We use computational techniques such as all-atom and coarse-grained molecular dynamics, the finite element method and solid-fluid interaction techniques to study e.g., selective transport through the nuclear pore complex, the mechanics of the cytoskeleton, liquid-liquid phase separation of intrinsically-disordered proteins and protein aggregation in neurodegenerative diseases.

Paul Kouwer

Radboud University

The Molecular Materials group at Radboud University develops new synthetic hydrogels. The gels are based on polyisocyanides that reversibly gel when heated beyond room temperature. The semi-flexible nature of the polymer chains in combination with the fibrous architecture makes the gels very similar to collagen or fibrin gels, but with synthetic materials, we have much more control over their molecular structure and, hence the gel properties. Part of the group studies how we can (in situ) manipulate the mechanical properties of the gels; the other part manipulates the hydrogel to direct cell behaviour.

Paul van der Schoot

TU Eindhoven

We apply statistical mechanics to problems in liquid crystals, colloids, supramolecular polymers, viruses and geometric percolation. The toolbox we make use of ranges from analytical methods to Brownian and molecular dynamics simulations. In the past focus was on static properties and phase behaviour in soft matter systems but our attention is shifting toward dynamics.

Peter Schall

University of Amsterdam

We investigate soft condensed matter at the micron scale - crystallization and phase separations, solid and liquid-like behavior, elastic and plastic properties. Using three-dimensional microscopic imaging and light scattering we bridge length scales from the particle scale to macroscopic lengths, thereby linking the microscopic behavior of these materials to their macroscopic properties.

Remco Tuinier

TU Eindhoven

In the Laboratory of Physical Chemistry we study the i) self-organization of colloids and polymers, ii) phase behaviour (and dynamics) of colloidal and colloid-polymer mixtures and iii) polymers & colloids at surfaces. For theme i applications involve the controlled encapsulation of compounds that need protection and/or need to be released at a desired rate. Topic ii aims at gaining a better understanding of the phase stability and dynamics in complex mixtures of colloids and polymers and bringing the knowledge towards mixtures in which the particles have realistic interactions (such as charges, soft repulsions). Applications involve understanding phase stability of complex mixtures such as food and (drying) paint. Theme iii involves the development of advanced (modified) surfaces for anti-(bio)fouling, controlled absorption/release and specific (bio)adhesion using tuned chemistry and topography as well as modifying surfaces to understand wettability, swelling, oil/water interaction(s).

Wouter Ellenbroek

TU Eindhoven

We research the physical foundations of novel (often bio-inspired) materials that respond to their environment in interesting or useful ways. Using and developing numerical methods such as molecular dynamics, as well as analytical tools based in statistical physics, we study the (two-way!) interplay between mechanical forces and structural properties of novel responsive materials.